Search results
Results from the WOW.Com Content Network
For example, consider radical bromination of toluene: [5] bromination of toluene with hydrobromic acid and hydrogen peroxide in water. This reaction takes place on water instead of an organic solvent and the bromine is obtained from oxidation of hydrobromic acid with hydrogen peroxide. An incandescent light bulb suffices to radicalize.
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Halogenation of saturated hydrocarbons is a substitution reaction. The reaction typically involves free radical pathways. The regiochemistry of the halogenation of alkanes is largely determined by the relative weakness of the C–H bonds. This trend is reflected by the faster reaction at tertiary and secondary positions.
An example is the conversion of alkyl chloride into alkyl fluoride: C 3 H 5-Cl + NaF → R-F + NaCl. This kind of reaction is called Finkelstein reaction. [2] However, it is also possible, for example, to produce phosphorus fluoride compounds by transhalogenating chlorine, bromine or iodine bound to phosphorus with a metal fluoride. [3]
The simplest member, toluene (or methylbenzene), has the hydrogen atom of the benzene ring replaced by a methyl group. The chemical formula of alkylbenzenes is C n H 2n-6. [2] Safety hazards of toluene. Oftentimes, toluene is used as an organic solvent.
Halogenation of phenols is faster in polar solvents in a basic environment due to the dissociation of phenol, with phenoxide ions being more susceptible to electrophilic attack as they are more electron-rich. Chlorination of toluene with chlorine without catalyst requires a polar solvent as well such as acetic acid.
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
For example, phenols and anilines react quickly with chlorine and bromine water to give multihalogenated products. Many detailed laboratory procedures are available. [ 5 ] For alkylbenzene derivatives, e.g. toluene , the alkyl positions tend to be halogenated by free radical conditions, whereas ring halogenation is favored in the presence of ...