Search results
Results from the WOW.Com Content Network
For example, consider radical bromination of toluene: [5] bromination of toluene with hydrobromic acid and hydrogen peroxide in water. This reaction takes place on water instead of an organic solvent and the bromine is obtained from oxidation of hydrobromic acid with hydrogen peroxide. An incandescent light bulb suffices to radicalize.
In chemistry, halogenation is a chemical reaction which introduces one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. [1] This kind of conversion is in fact so common that a comprehensive overview is challenging.
An example is the conversion of alkyl chloride into alkyl fluoride: C 3 H 5-Cl + NaF → R-F + NaCl. This kind of reaction is called Finkelstein reaction. [2] However, it is also possible, for example, to produce phosphorus fluoride compounds by transhalogenating chlorine, bromine or iodine bound to phosphorus with a metal fluoride. [3]
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Toluene (or methylbenzene) is a common chemical found in chemistry laboratories. An alkylbenzene is a chemical compound that contains a monocyclic aromatic ring attaching to one or more saturated hydrocarbon chains. [1] Alkylbenzenes are derivatives of benzene, in which one or more hydrogen atoms are replaced by alkyl groups.
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Halogenation of phenols is faster in polar solvents in a basic environment due to the dissociation of phenol, with phenoxide ions being more susceptible to electrophilic attack as they are more electron-rich. Chlorination of toluene with chlorine without catalyst requires a polar solvent as well such as acetic acid.