Search results
Results from the WOW.Com Content Network
In Cohen forcing (named after Paul Cohen) P is the set of functions from a finite subset of ω 2 × ω to {0,1} and p < q if p ⊇ q. This poset satisfies the countable chain condition. Forcing with this poset adds ω 2 distinct reals to the model; this was the poset used by Cohen in his original proof of the independence of the continuum ...
denote the poset formed by removing x from P. A poset game on P, played between two players conventionally named Alice and Bob, is as follows: Alice chooses a point x ∈ P; thus replacing P with P x, and then passes the turn to Bob who plays on P x, and passes the turn to Alice. A player loses if it is their turn and there are no points to choose.
Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset. A rank or rank level of a graded poset is the subset of all the elements of the poset that have a given rank value. [1] [2] Graded posets play an important role in combinatorics and can be visualized by means of a Hasse diagram.
In mathematics, the poset topology associated to a poset (S, ≤) is the Alexandrov topology (open sets are upper sets) on the poset of finite chains of (S, ≤), ordered by inclusion. Let V be a set of vertices. An abstract simplicial complex Δ is a set of finite sets of vertices, known as faces , such that
For example, the open interval (0, 1) on the integers is empty since there is no integer x such that 0 < x < 1. The half-open intervals [a, b) and (a, b] are defined similarly. Whenever a ≤ b does not hold, all these intervals are empty. Every interval is a convex set, but the converse does not hold; for example, in the poset of divisors of ...
A partially ordered set (poset) consists of a set of elements together with a binary relation x ≤ y on pairs of elements that is reflexive (x ≤ x for every x), transitive (if x ≤ y and y ≤ z then x ≤ z), and antisymmetric (if both x ≤ y and y ≤ x hold, then x = y).
A nontrivial poset satisfying the descending chain condition is said to have deviation 0. Then, inductively, a poset is said to have deviation at most α (for an ordinal α) if for every descending chain of elements a 0 > a 1 >... all but a finite number of the posets of elements between a n and a n+1 have deviation less than α. The deviation ...
In mathematics, a ranked poset is a partially ordered set in which one of the following (non-equivalent) conditions hold: it is a graded poset, or; a poset with the property that for every element x, all maximal chains among those with x as greatest element have the same finite length, or; a poset in which all maximal chains have the same ...