Search results
Results from the WOW.Com Content Network
Lorentz's theory of electrons. Formulas for the Lorentz force (I, ponderomotive force) and the Maxwell equations for the divergence of the electrical field E (II) and the magnetic field B (III), La théorie electromagnétique de Maxwell et son application aux corps mouvants, 1892, p. 451. V is the velocity of light.
The Lorentz–Lorenz equation is similar to the Clausius–Mossotti relation, except that it relates the refractive index (rather than the dielectric constant) of a substance to its polarizability. The Lorentz–Lorenz equation is named after the Danish mathematician and scientist Ludvig Lorenz , who published it in 1869, and the Dutch ...
Painting of Hendrik Lorentz by Menso Kamerlingh Onnes, 1916 Portrait by Jan Veth Lorentz' theory of electrons. Formulas for the Lorentz force (I) and the Maxwell equations for the divergence of the electrical field E (II) and the magnetic field B (III), La théorie electromagnétique de Maxwell et son application aux corps mouvants, 1892, p. 451.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
At any time after t = t′ = 0, xx′ is not zero, so dividing both sides of the equation by xx′ results in =, which is called the "Lorentz factor". When the transformation equations are required to satisfy the light signal equations in the form x = ct and x ′ = ct ′, by substituting the x and x'-values, the same technique produces the ...
The Lorentz transformation is a linear transformation. It may include a rotation of space; a rotation-free Lorentz transformation is called a Lorentz boost. In Minkowski space—the mathematical model of spacetime in special relativity—the Lorentz transformations preserve the spacetime interval between any two events. They describe only the ...
The Lorentz self-force derived for non-relativistic velocity approximation , is given in SI units by: = ˙ = ˙ = ˙ or in Gaussian units by = ˙. where is the force, ˙ is the derivative of acceleration, or the third derivative of displacement, also called jerk, μ 0 is the magnetic constant, ε 0 is the electric constant, c is the speed of light in free space, and q is the electric charge of ...
As in the Gaussian system (G), the Heaviside–Lorentz system (HL) uses the length–mass–time dimensions. This means that all of the units of electric and magnetic quantities are expressible in terms of the units of the base quantities length, time and mass. Coulomb's equation, used to define charge in these systems, is F = q G 1 q G