enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

  3. Nonparametric skew - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_skew

    The nonparametric skew is one third of the Pearson 2 skewness coefficient and lies between −1 and +1 for any distribution. [5] [6] This range is implied by the fact that the mean lies within one standard deviation of any median. [7] Under an affine transformation of the variable (X), the value of S does not change except for a possible change ...

  4. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    A quantity analogous to the coefficient of variation, but based on L-moments, can also be defined: = / , which is called the "coefficient of L-variation", or "L-CV". For a non-negative random variable, this lies in the interval ( 0, 1 ) [1] and is identical to the Gini coefficient.

  5. Coskewness - Wikipedia

    en.wikipedia.org/wiki/Coskewness

    Coskewness is the third standardized cross central moment, related to skewness as covariance is related to variance. In 1976, Krauss and Litzenberger used it to examine risk in stock market investments. [1] The application to risk was extended by Harvey and Siddique in 2000. [2]

  6. Multimodal distribution - Wikipedia

    en.wikipedia.org/wiki/Multimodal_distribution

    Sarle's bimodality coefficient b is [25] = + where γ is the skewness and κ is the kurtosis. The kurtosis is here defined to be the standardised fourth moment around the mean. The value of b lies between 0 and 1. [26]

  7. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In the following, { x i } denotes a sample of n observations, g 1 and g 2 are the sample skewness and kurtosis, m j ’s are the j-th sample central moments, and ¯ is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as √ β 1 and β 2 respectively.

  8. Pearson distribution - Wikipedia

    en.wikipedia.org/wiki/Pearson_distribution

    The first is the square of the skewness: β 1 = γ 1 where γ 1 is the skewness, or third standardized moment. The second is the traditional kurtosis, or fourth standardized moment: β 2 = γ 2 + 3. (Modern treatments define kurtosis γ 2 in terms of cumulants instead of moments, so that for a normal distribution we have γ 2 = 0 and β 2 = 3.

  9. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...