Search results
Results from the WOW.Com Content Network
The situation, task, action, result (STAR) format is a technique [1] used by interviewers to gather all the relevant information about a specific capability that the job requires. [ citation needed ] Situation : The interviewer wants you to present a recent challenging situation in which you found yourself.
"How do you work under pressure?" We're all familiar with this question, usually the second or third one asked in a typical job interview. It's inescapable--there will be days (and nights, and ...
Typical boundary conditions set the values of the observable parameters appropriately at the surface (=) and center (=) of the star: () =, meaning the pressure at the surface of the star is zero; () =, there is no mass inside the center of the star, as required if the mass density remains finite; () =, the total mass of the star is the star's ...
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's helium flash ), matter can become non-degenerate without reducing its density.
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
Traditionally, compressed air work was limited to maximum ambient pressures of between 3 and 4 bars (3.0 and 3.9 atm), but experience with offshore saturation diving shows that higher pressures can be managed at acceptable risk using the techniques developed in that industry, including saturation exposures and the use of breathing gases other than air.
The compression caused by the collapse raises the temperature until thermonuclear fusion occurs at the center of the star, at which point the collapse gradually comes to a halt as the outward thermal pressure balances the gravitational forces. The star then exists in a state of dynamic equilibrium. During the star's evolution a star might ...