Search results
Results from the WOW.Com Content Network
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1] Generally, if the function is any trigonometric function, and is its derivative, = + In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
A. Dieckmann, Table of Integrals (Elliptic Functions, Square Roots, Inverse Tangents and More Exotic Functions): Indefinite Integrals Definite Integrals; Math Major: A Table of Integrals; O'Brien, Francis J. Jr. "500 Integrals of Elementary and Special Functions". Derived integrals of exponential, logarithmic functions and special functions.
Plot of Si(x) for 0 ≤ x ≤ 8π. Plot of the cosine integral function Ci(z) in the complex plane from −2 − 2i to 2 + 2i. The different sine integral definitions are = = .
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has = + , where e is the base of the natural logarithm, i is the ...
Indefinite integrals are antiderivative functions. A constant (the constant of integration) may be added to the right hand side of any of these formulas, but has been suppressed here in the interest of brevity.
"Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions". Mathematics. 8 (687): 687. doi: 10.3390/math8050687. Reynolds, Robert; Stauffer, Allan (2019). "A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function". Mathematics. 7 (1148): 1148. doi: 10.3390 ...