Search results
Results from the WOW.Com Content Network
A permuted congruential generator (PCG) is a pseudorandom number generation algorithm developed in 2014 by Dr. M.E. O'Neill which applies an output permutation function to improve the statistical properties of a modulo-2 n linear congruential generator.
Grow (generator, base); // By the orbit-stabilizer theorem, the permutations in the returned set are // coset representatives of the cosets of our subgroup. for (permutation in newTerritorySet) transversalSet. Add (permutation); // We now apply Schreier's lemma to find new generators for our subgroup.
A simple algorithm to generate a permutation of n items uniformly at random without retries, known as the Fisher–Yates shuffle, is to start with any permutation (for example, the identity permutation), and then go through the positions 0 through n − 2 (we use a convention where the first element has index 0, and the last element has index n − 1), and for each position i swap the element ...
In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.
The inverse table inv represents the multiplicative inverse of a digit, that is, the value that satisfies d(j, inv(j)) = 0. The permutation table p applies a permutation to each digit based on its position in the number. This is actually a single permutation (1 5 8 9 4 2 7 0)(3 6) applied iteratively; i.e. p(i+j,n) = p(i, p(j,n)).
This table specifies the input permutation on a 64-bit block. The meaning is as follows: the first bit of the output is taken from the 58th bit of the input; the second bit from the 50th bit, and so on, with the last bit of the output taken from the 7th bit of the input.
The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...
In mathematics and in particular in combinatorics, the Lehmer code is a particular way to encode each possible permutation of a sequence of n numbers. It is an instance of a scheme for numbering permutations and is an example of an inversion table. The Lehmer code is named in reference to D. H. Lehmer, [1] but the code had been known since 1888 ...