Search results
Results from the WOW.Com Content Network
Multivariate t-distribution, which is another widely used spherically symmetric multivariate distribution. Multivariate stable distribution extension of the multivariate normal distribution, when the index (exponent in the characteristic function) is between zero and two. Mahalanobis distance; Wishart distribution; Matrix normal distribution
All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable whose real and imaginary parts are independent normally distributed random variables with mean zero and variance /.
A random vector X ∈ R p (a p×1 "column vector") has a multivariate normal distribution with a nonsingular covariance matrix Σ precisely if Σ ∈ R p × p is a positive-definite matrix and the probability density function of X is
In probability theory, Isserlis' theorem or Wick's probability theorem is a formula that allows one to compute higher-order moments of the multivariate normal distribution in terms of its covariance matrix. It is named after Leon Isserlis.
So there is no strong reason to prefer the "generalized" normal distribution of type 1, e.g. over a combination of Student-t and a normalized extended Irwin–Hall – this would include e.g. the triangular distribution (which cannot be modeled by the generalized Gaussian type 1). A symmetric distribution which can model both tail (long and ...