Search results
Results from the WOW.Com Content Network
Multivariate t-distribution, which is another widely used spherically symmetric multivariate distribution. Multivariate stable distribution extension of the multivariate normal distribution, when the index (exponent in the characteristic function) is between zero and two. Mahalanobis distance; Wishart distribution; Matrix normal distribution
The multivariate normal distribution is a special case of the elliptical distributions. As such, its iso-density loci in the k = 2 case are ellipses and in the case of arbitrary k are ellipsoids. Rectified Gaussian distribution a rectified version of normal distribution with all the negative elements reset to 0
where (,) follows the multivariate normal distribution with covariance and the threshold is of the form = for some positive vector > and positive constant >. As in the one dimensional case, there is no simple analytical formula for the Q -function.
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...
In probability theory, Isserlis' theorem or Wick's probability theorem is a formula that allows one to compute higher-order moments of the multivariate normal distribution in terms of its covariance matrix. It is named after Leon Isserlis.
A random vector X ∈ R p (a p×1 "column vector") has a multivariate normal distribution with a nonsingular covariance matrix Σ precisely if Σ ∈ R p × p is a positive-definite matrix and the probability density function of X is
The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem.
Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution.