enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.

  3. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  4. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The final symmetry-labeled atomic orbital is now known as an irreducible representation. Carbon dioxide’s molecular orbitals are made by the linear combination of atomic orbitals of the same irreducible representation that are also similar in atomic orbital energy. Significant atomic orbital overlap explains why sp bonding may occur. [28]

  5. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Hybridization is a model that describes how atomic orbitals combine to form new orbitals that better match the geometry of molecules. Atomic orbitals that are similar in energy combine to make hybrid orbitals. For example, the carbon in methane (CH 4) undergoes sp 3 hybridization to form four equivalent orbitals, resulting in a tetrahedral shape.

  6. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization. As s orbitals are spherical (and have no directionality) and p orbitals are oriented 90° to each other, a theory was needed to explain why molecules such as methane (CH 4 ) had ...

  7. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Atomic orbitals are basic building blocks of the atomic orbital model (or electron cloud or wave mechanics model), a modern framework for visualizing submicroscopic behavior of electrons in matter. In this model, the electron cloud of an atom may be seen as being built up (in approximation) in an electron configuration that is a product of ...

  8. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    This is a weighted sum of the wavefunctions. Now choose a second hybrid orbital s + √ λ j p j, where p j is directed in some way and λ j is the amount of p character in this second orbital. The value of λ j and direction of p j must be determined so that the resulting orbital can be normalized and so that it is orthogonal to the first ...

  9. Trigonal prismatic molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_prismatic...

    In d 0 complexes it may be ascribed to sd 5 hybridization, but in d 1 and d 2 complexes the d z 2 orbital is occupied by nonbonding electron (pair). Furthermore, when unoccupied, said orbital participates in bonding and causes C 3v distortion, like in W(CH 3) 6.