Search results
Results from the WOW.Com Content Network
In statistics, a confidence interval (CI) is a tool for estimating a parameter, such as the mean of a population. [1] To make a CI, an analyst first selects a confidence level , such as 95%. The analyst then follows a procedure that outputs an interval.
A confidence interval states there is a 100γ% confidence that the parameter of interest is within a lower and upper bound. A common misconception of confidence intervals is 100γ% of the data set fits within or above/below the bounds, this is referred to as a tolerance interval, which is discussed below.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
In general, the subscript 0 indicates a value taken from the null hypothesis, H 0, which should be used as much as possible in constructing its test statistic. ... Definitions of other symbols: Definitions of other symbols:
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
In these hypothetical repetitions, independent data sets following the same probability distribution as the actual data are considered, and a confidence interval is computed from each of these data sets; see Neyman construction. The coverage probability is the fraction of these computed confidence intervals that include the desired but ...
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".