Search results
Results from the WOW.Com Content Network
The cell membrane of CaCl 2-treated cells is severely depolarized during the heat shock stage, and as a result, the drop in membrane potential reduces the negative nature of the cell's internal potential, allowing negatively charged DNA to flow into the interior of the cell. Afterwards, the membrane potential can be raised back to its initial ...
The cell membrane, also called the plasma membrane or plasmalemma, is a semipermeable lipid bilayer common to all living cells. It contains a variety of biological molecules, primarily proteins and lipids, which are involved in a vast array of cellular processes.
Voltage-gated ion-channels are usually ion-specific, and channels specific to sodium (Na +), potassium (K +), calcium (Ca 2+), and chloride (Cl −) ions have been identified. [1] The opening and closing of the channels are triggered by changing ion concentration, and hence charge gradient, between the sides of the cell membrane. [2]
Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g. muscle, glial cells, neurons) with a permeability to the calcium ion Ca 2+.
Voltage-gated chloride channels perform numerous crucial physiological and cellular functions, such as controlling pH, volume homeostasis, transporting organic solutes, regulating cell migration, proliferation, and differentiation. Based on sequence homology the chloride channels can be subdivided into a number of groups.
When rod cells are in the dark, they are depolarized. In the rod cells, this depolarization is maintained by ion channels that remain open due to the higher voltage of the rod cell in the depolarized state. The ion channels allow calcium and sodium to pass freely into the cell, maintaining the depolarized state.
For example, the sodium-calcium exchanger uses energy from the electrochemical gradient of sodium by coupling the influx of sodium into cell (and down its concentration gradient) with the transport of calcium out of the cell. In addition, the plasma membrane Ca 2+ ATPase (PMCA) obtains energy to pump calcium out of the cell by hydrolysing ...
Calcium chloride was apparently discovered in the 15th century but wasn't studied properly until the 18th century. [11] It was historically called "fixed sal ammoniac" (Latin: sal ammoniacum fixum [12]) because it was synthesized during the distillation of ammonium chloride with lime and was nonvolatile (while the former appeared to sublime); in more modern times (18th-19th cc.) it was called ...