Search results
Results from the WOW.Com Content Network
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix generated from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which are useful for computing both the determinant and inverse of square matrices.
In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n-matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1)-submatrices of B.
Now, if an element of a matrix A ij and a cofactor adj T (A) ik of element A ik lie on the same row (or column), then the cofactor will not be a function of A ij, because the cofactor of A ik is expressed in terms of elements not in its own row (nor column). Thus,
The minors and cofactors of a matrix are found by computing the determinant of certain submatrices. [16] [17] A principal submatrix is a square submatrix obtained by removing certain rows and columns. The definition varies from author to author.
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.
In mathematics, a matrix coefficient (or matrix element) is a function on a group of a special form, which depends on a linear representation of the group and additional data. Precisely, it is a function on a compact topological group G obtained by composing a representation of G on a vector space V with a linear map from the endomorphisms of V ...
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...
Cofactor matrix: Formed by the cofactors of a square matrix, that is, the signed minors, of the matrix: Transpose of the Adjugate matrix: Companion matrix: A matrix having the coefficients of a polynomial as last column, and having the polynomial as its characteristic polynomial: Coxeter matrix