Search results
Results from the WOW.Com Content Network
The acid-growth hypothesis is a theory that explains the expansion dynamics of cells and organs in plants. It was originally proposed by Achim Hager and Robert Cleland in 1971. [1] [2] They hypothesized that the naturally occurring plant hormone, auxin (indole-3-acetic acid, IAA), induces H + proton extrusion into the apoplast.
The plants subsequently lodge due to lack of support, and die. [2] Gibberellins have a number of effects on plant development. They can stimulate rapid stem and root growth, induce mitotic division in the leaves of some plants, and increase seed germination rates. [4]
EAAs are provided in both animal and plant-based food. The EAAs in plants vary greatly due to the vast variation in the plant world and, in general, plants have much lower content of proteins than animal food. [2] [3] Some plant-based foods contain few or no EAAs, e.g. some sprouts, mango, pineapple, lime and melon. On the other hand, nuts ...
Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite .
Acid growth refers to the ability of plant cells and plant cell walls to elongate or expand quickly at low (acidic) pH. The cell wall needs to be modified in order to maintain the turgor pressure. This modification is controlled by plant hormones like auxin. Auxin also controls the expression of some cell wall genes. [1]
Agronomic studies often focus on the above-ground part of plant biomass, and consider crop growth rates rather than individual plant growth rates. Nonetheless there is a strong corollary between the two approaches. More specifically, the ULR as discussed above shows up in crop growth analysis as well, as: = . = .
In plant species from temperate parts of the world, abscisic acid plays a role in leaf and seed dormancy by inhibiting growth, but, as it is dissipated from seeds or buds, growth begins. In other plants, as ABA levels decrease, growth then commences as gibberellin levels increase. Without ABA, buds and seeds would start to grow during warm ...
This article needs attention from an expert in biochemistry.The specific problem is: someone with a solid grasp of the full scope of this subject and of its secondary and advanced teaching literatures needs to address A, the clear structural issues of the article (e.g., general absence of catabolic biosynthetic pathways, insertion of macromolecule anabolic paths before all building blocks ...