Search results
Results from the WOW.Com Content Network
A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x 0 is an interior point in the domain of a function f , then f is said to be differentiable at x 0 if the derivative f ′ ( x 0 ) {\displaystyle f'(x_{0})} exists.
In particular, the derivative of the function (/) is a Darboux function even though it is not continuous at one point. An example of a Darboux function that is nowhere continuous is the Conway base 13 function. Darboux functions are a quite general class of functions. It turns out that any real-valued function ƒ on the real line can be ...
This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (− r ) = f ( r ) , Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero.
Rademacher's theorem is a special case, due to the fact that any Lipschitz function on Ω is an element of the space W 1,∞ (Ω). [9] There is a version of Rademacher's theorem that holds for Lipschitz functions from a Euclidean space into an arbitrary metric space in terms of metric differentials instead of the usual derivative.
Vertical tangent on the function ƒ(x) at x = c. In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.
The global extrema of a function f on a domain A occur only at boundaries, non-differentiable points, and stationary points. If is a global extremum of f, then one of the following is true: boundary: is in the boundary of A; non-differentiable: f is not differentiable at
A well-known counterexample is the absolute value function f(x) = |x|, which is not differentiable at x = 0, but is symmetrically differentiable here with symmetric derivative 0. For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3]
The Weierstrass function has historically served the role of a pathological function, being the first published example (1872) specifically concocted to challenge the notion that every continuous function is differentiable except on a set of isolated points. [1]