enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Birthday problem - Wikipedia

    en.wikipedia.org/wiki/Birthday_problem

    Comparing p(n) = probability of a birthday match with q(n) = probability of matching your birthday. In the birthday problem, neither of the two people is chosen in advance. By contrast, the probability q(n) that at least one other person in a room of n other people has the same birthday as a particular person (for example, you) is given by

  3. Wikipedia:Reference desk/Science/Birthday probability ...

    en.wikipedia.org/.../Birthday_probability_question

    (1/365! is the probability that you take 365 people with distinct birthdays and, picking them one at a time, correctly pick them in birthday order). Let's work with smaller numbers: assume a 3-sided coin (it's more interesting than a two-sided, but the numbers are small).

  4. Birthday attack - Wikipedia

    en.wikipedia.org/wiki/Birthday_attack

    A birthday attack is a bruteforce collision attack that exploits the mathematics behind the birthday problem in probability theory. This attack can be used to abuse communication between two or more parties. The attack depends on the higher likelihood of collisions found between random attack attempts and a fixed degree of permutations ...

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Dirac delta function, although not strictly a probability distribution, is a limiting form of many continuous probability functions. It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it ...

  6. File:Birthday paradox probability.svg - Wikipedia

    en.wikipedia.org/wiki/File:Birthday_paradox...

    English: In probability theory, the birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are 366 possible birthdays, including February 29). However, 99% ...

  7. Pigeonhole principle - Wikipedia

    en.wikipedia.org/wiki/Pigeonhole_principle

    The birthday problem asks, for a set of n randomly chosen people, what is the probability that some pair of them will have the same birthday? The problem itself is mainly concerned with counterintuitive probabilities, but we can also tell by the pigeonhole principle that among 367 people, there is at least one pair of people who share the same ...

  8. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    That is, the probability function f(x) lies between zero and one for every value of x in the sample space Ω, and the sum of f(x) over all values x in the sample space Ω is equal to 1. An event is defined as any subset of the sample space . The probability of the event is defined as

  9. Birthday effect - Wikipedia

    en.wikipedia.org/wiki/Birthday_effect

    A study using the populations of Denmark and Austria (a total of 2,052,680 deaths over the time period) found that although people's life span tended to correlate with their month of birth, there was no consistent birthday effect, and people born in autumn or winter were more likely to die in the months further from their birthday. [8]