enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  3. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    This constitutive equation is also called the Newton law of viscosity. The total stress tensor σ {\displaystyle {\boldsymbol {\sigma }}} can always be decomposed as the sum of the isotropic stress tensor and the deviatoric stress tensor ( σ ′ {\displaystyle {\boldsymbol {\sigma }}'} ):

  4. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    This is constitutive equation is also called the Newtonian law of viscosity. Dynamic viscosity μ need not be constant – in incompressible flows it can depend on density and on pressure. Any equation that makes explicit one of these transport coefficient in the conservative variables is called an equation of state .

  5. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The Navier–Stokes equations are based on the assumption that the fluid, at the scale of interest, is a continuum – a continuous substance rather than discrete particles. Another necessary assumption is that all the fields of interest including pressure , flow velocity , density , and temperature are at least weakly differentiable .

  6. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    The constitutive relation is expressed as a linear first-order differential equation: = + ˙ This model represents a solid undergoing reversible, viscoelastic strain. Upon application of a constant stress, the material deforms at a decreasing rate, asymptotically approaching the steady-state strain.

  7. Pressure measurement - Wikipedia

    en.wikipedia.org/wiki/Pressure_measurement

    Differential pressure is the difference in pressure between two points. Differential pressure sensors are used to measure many properties, such as pressure drops across oil filters or air filters, fluid levels (by comparing the pressure above and below the liquid) or flow rates (by measuring the change in pressure across a restriction ...

  8. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    This pressure distribution is simply the pressure at all points around an airfoil. Typically, graphs of these distributions are drawn so that negative numbers are higher on the graph, as the C p {\displaystyle C_{p}} for the upper surface of the airfoil will usually be farther below zero and will hence be the top line on the graph.

  9. Governing equation - Wikipedia

    en.wikipedia.org/wiki/Governing_equation

    This explains the duality in Darcy's law as a governing equation and a defining equation for absolute permeability. The non-linearity of the material derivative in balance equations in general, and the complexities of Cauchy's momentum equation and Navier-Stokes equation makes the basic equations in classical mechanics exposed to establishing ...