Search results
Results from the WOW.Com Content Network
There are two main uses of the term calibration in statistics that denote special types of statistical inference problems. Calibration can mean a reverse process to regression, where instead of a future dependent variable being predicted from known explanatory variables, a known observation of the dependent variables is used to predict a corresponding explanatory variable; [1]
The formal definition of calibration by the International Bureau of Weights and Measures (BIPM) is the following: "Operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties (of the calibrated instrument or ...
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10] As such, it compares estimates of pre- and post-test probability.
Fact-checking is the process of verifying the factual accuracy of questioned reporting and statements. Fact-checking can be conducted before or after the text or content is published or otherwise disseminated.
The accuracy of the estimate is the maximum distance between the location coordinates and the ground truth. We could say in this case that the estimate accuracy is 10 meters, meaning that the point on earth represented by the location coordinates is thought to be within 10 meters of George's nose—the ground truth.
False precision (also called overprecision, fake precision, misplaced precision, and spurious precision) occurs when numerical data are presented in a manner that implies better precision than is justified; since precision is a limit to accuracy (in the ISO definition of accuracy), this often leads to overconfidence in the accuracy, named precision bias.
An example of a data-integrity mechanism is the parent-and-child relationship of related records. If a parent record owns one or more related child records all of the referential integrity processes are handled by the database itself, which automatically ensures the accuracy and integrity of the data so that no child record can exist without a parent (also called being orphaned) and that no ...
In addition to accuracy of individual statements, it is an objective that articles provide overall accurate coverage of the topic, albeit the latter is less clear-cut. This includes balanced coverage, with inclusion weighted by degree of significance, informativeness on the topic, and directness of relevance to the topic.