Search results
Results from the WOW.Com Content Network
Parity only depends on the number of ones and is therefore a symmetric Boolean function.. The n-variable parity function and its negation are the only Boolean functions for which all disjunctive normal forms have the maximal number of 2 n − 1 monomials of length n and all conjunctive normal forms have the maximal number of 2 n − 1 clauses of length n.
To find the value of the Boolean function for a given assignment of (Boolean) values to the variables, we start at the reference edge, which points to the BDD's root, and follow the path that is defined by the given variable values (following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable ...
Self-concordant function; Semi-differentiability; Semilinear map; Set function; List of set identities and relations; Shear mapping; Shekel function; Signomial; Similarity invariance; Soboleva modified hyperbolic tangent; Softmax function; Softplus; Splitting lemma (functions) Squeeze theorem; Steiner's calculus problem; Strongly unimodal ...
Values can be looked up via one of the Map members, such as its indexer or Item property (which throw an exception if the key does not exist) or the TryFind function, which returns an option type with a value of Some <result>, for a successful lookup, or None, for an unsuccessful one.
In Haskell, the polymorphic function map :: (a -> b) -> [a] -> [b] is generalized to a polytypic function fmap :: Functor f => (a -> b) -> f a -> f b, which applies to any type belonging the Functor type class. The type constructor of lists [] can be defined as an instance of the Functor type class using the map function from the previous example:
The parity function maps a number to the number of 1's in its binary representation, modulo 2, so its value is zero for evil numbers and one for odious numbers. The Thue–Morse sequence , an infinite sequence of 0's and 1's, has a 0 in position i when i is evil, and a 1 in that position when i is odious.
The distinction between the two is subtle: "higher-order" describes a mathematical concept of functions that operate on other functions, while "first-class" is a computer science term for programming language entities that have no restriction on their use (thus first-class functions can appear anywhere in the program that other first-class ...
Therefore, the parity of the number of inversions of σ is precisely the parity of m, which is also the parity of k. This is what we set out to prove. We can thus define the parity of σ to be that of its number of constituent transpositions in any decomposition. And this must agree with the parity of the number of inversions under any ordering ...