enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor–Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Cantor–Zassenhaus_algorithm

    The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...

  3. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.

  4. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If the original polynomial is the product of factors at least two of which are of degree 2 or higher, this technique only provides a partial factorization; otherwise the factorization is complete. In particular, if there is exactly one non-linear factor, it will be the polynomial left after all linear factors have been factorized out.

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  6. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.

  7. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    A free implementation is available under the name of MPSolve. This is a reference implementation, which can find routinely the roots of polynomials of degree larger than 1,000, with more than 1,000 significant decimal digits. The methods for computing all roots may be used for computing real roots.

  8. 11 Cheap and Delicious Canned Cream of Chicken Soup Recipes - AOL

    www.aol.com/11-cheap-delicious-canned-cream...

    3. Smothered Chicken and Rice. This recipe uses two types of canned soup: cream of chicken and cream of mushroom. All that soup — plus the addition of milk — creates a flavorful gravy that is ...

  9. Lindsey–Fox algorithm - Wikipedia

    en.wikipedia.org/wiki/Lindsey–Fox_algorithm

    Zeng's method is powerful but designed for polynomials of moderate degrees, and hence only used in special cases [6]. References Successful completion of the factoring of a polynomial requires matching zeros on the complex plane measured by the convergence of Laguerre's algorithm on each of the zeros. It also requires matching the polynomial ...

  1. Related searches free polynomial factor calculator soup recipe with 3 decimal degrees and two

    polynomial factorization formulafactorization of polynomials wikipedia