Search results
Results from the WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [5] the zeroes of a function; whether the indefinite integral of a function is also in the class. [6] Of course, some subclasses of these problems are decidable.
Problems 1, 2, 5, 6, [g] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis ), 13 and 16 [ h ] unresolved, and 4 and 23 as too vague to ever be described as solved.
List of unsolved problems may refer to several notable conjectures or open problems in various academic fields: Natural sciences, engineering and medicine [ edit ]
The other six Millennium Prize Problems remain unsolved, despite a large number of unsatisfactory proofs by both amateur and professional mathematicians. Andrew Wiles , as part of the Clay Institute's scientific advisory board, hoped that the choice of US$ 1 million prize money would popularize, among general audiences, both the selected ...
Pages in category "Unsolved problems in number theory" The following 106 pages are in this category, out of 106 total. This list may not reflect recent changes .
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.
Montgomery and Vaughan showed that the exceptional set of even numbers not expressible as the sum of two primes has a density zero, although the set is not proven to be finite. [9] The best current bounds on the exceptional set is E ( x ) < x 0.72 {\displaystyle E(x)<x^{0.72}} (for large enough x ) due to Pintz , [ 10 ] [ 11 ] and E ( x ) ≪ x ...