enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    The first results concerning binomial series for other than positive-integer exponents were given by Sir Isaac Newton in the study of areas enclosed under certain curves. John Wallis built upon this work by considering expressions of the form y = (1 − x 2 ) m where m is a fraction.

  4. Table of Newtonian series - Wikipedia

    en.wikipedia.org/wiki/Table_of_Newtonian_series

    Download as PDF; Printable version ... In mathematics, a Newtonian series, named after Isaac Newton, is a sum over a sequence ... The generalized binomial theorem gives

  5. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    These "generalized binomial coefficients" appear in Newton's generalized binomial theorem. For each k, the polynomial () can be characterized as the unique degree k polynomial p(t) satisfying p(0) = p(1) = ⋯ = p(k − 1) = 0 and p(k) = 1. Its coefficients are expressible in terms of Stirling numbers of the first kind:

  6. Negative binomial theorem - Wikipedia

    en.wikipedia.org/?title=Negative_binomial...

    Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. ... Redirect to: Binomial theorem#Newton's generalized binomial theorem;

  7. Gaussian binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Gaussian_binomial_coefficient

    The Gaussian binomial coefficient, written as () or [], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian (,).

  8. De analysi per aequationes numero terminorum infinitas

    en.wikipedia.org/wiki/De_analysi_per_aequationes...

    Composed in 1669, [4] during the mid-part of that year probably, [5] from ideas Newton had acquired during the period 1665–1666. [4] Newton wrote And whatever the common Analysis performs by Means of Equations of a finite number of Terms (provided that can be done) this new method can always perform the same by means of infinite Equations.

  9. Trinomial expansion - Wikipedia

    en.wikipedia.org/wiki/Trinomial_expansion

    The trinomial expansion can be calculated by applying the binomial expansion twice, setting = +, which leads to (+ +) = (+) = = = = (+) = = = ().Above, the resulting (+) in the second line is evaluated by the second application of the binomial expansion, introducing another summation over the index .