Search results
Results from the WOW.Com Content Network
A boost converter or step-up converter is a DC-to-DC converter that increases voltage, while decreasing current, from its input to its output . It is a class of switched-mode power supply (SMPS) containing at least two semiconductors, a diode and a transistor , and at least one energy storage element: a capacitor , inductor , or the two in ...
Fig. 1: Schematic of a buck–boost converter. Fig. 2: The two operating states of a buck–boost converter: When the switch is turned on, the input voltage source supplies current to the inductor, and the capacitor supplies current to the resistor (output load). When the switch is opened, the inductor supplies current to the load via the diode D.
A full explanation is given there.) We note from basic AC circuit theory that our ripple voltage should be roughly sinusoidal: capacitor impedance times ripple current peak-to-peak value, or ΔV = ΔI / (ωC) where ω = 2πf, f is the ripple frequency, and f = 1/T, T the ripple period.
The boost/buck capabilities of the SEPIC are possible because of capacitor C1 and inductor L2. Inductor L1 and switch S1 create a standard boost converter, which generates a voltage (V S1) that is higher than V IN, whose magnitude is determined by the duty cycle of the switch S1.
Ripple (specifically ripple current or surge current) may also refer to the pulsed current consumption of non-linear devices like capacitor-input rectifiers. As well as these time-varying phenomena, there is a frequency domain ripple that arises in some classes of filter and other signal processing networks.
Fig. 1: Schematic of a flyback converter. The flyback converter is used in both AC/DC, and DC/DC conversion with galvanic isolation between the input and any outputs. The flyback converter is a buck-boost converter with the inductor split to form a transformer, so that the voltage ratios are multiplied with an additional advantage of isolation.
The Ćuk converter [1] (Serbo-Croatian:, English: / ˈ tʃ uː k /) is a type of buck-boost converter with low ripple current. [2] A Ćuk converter can be seen as a combination of boost converter and buck converter , having one switching device and a mutual capacitor, to couple the energy.
Other buck circuits exist to boost the average output current with a reduction of voltage. In a SMPS, the output current flow depends on the input power signal, the storage elements and circuit topologies used, and also on the pattern used (e.g., pulse-width modulation with an adjustable duty cycle ) to drive the switching elements.