enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauge fixing - Wikipedia

    en.wikipedia.org/wiki/Gauge_fixing

    The Coulomb gauge (also known as the transverse gauge) is used in quantum chemistry and condensed matter physics and is defined by the gauge condition (more precisely, gauge fixing condition) (,) =. It is particularly useful for "semi-classical" calculations in quantum mechanics, in which the vector potential is quantized but the Coulomb ...

  3. Lorenz gauge condition - Wikipedia

    en.wikipedia.org/wiki/Lorenz_gauge_condition

    The Lorenz gauge hence contradicted Maxwell's original derivation of the EM wave equation by introducing a retardation effect to the Coulomb force and bringing it inside the EM wave equation alongside the time varying electric field, which was introduced in Lorenz's paper "On the identity of the vibrations of light with electrical currents".

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    Since the potentials are only defined up to gauge equivalence, we are free to impose additional equations on the potentials, as long as for every pair of potentials there is a gauge equivalent pair that satisfies the additional equations (i.e. if the gauge fixing equations define a slice to the gauge action). The gauge-fixed potentials still ...

  5. Retarded potential - Wikipedia

    en.wikipedia.org/wiki/Retarded_potential

    Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]

  6. Relativistic electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Relativistic_electromagnetism

    An observer at rest with respect to a system of static, free charges will see no magnetic field. However, a moving observer looking at the same set of charges does perceive a current, and thus a magnetic field. That is, the magnetic field is simply the electric field, as seen in a moving coordinate system.

  7. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  8. Liénard–Wiechert potential - Wikipedia

    en.wikipedia.org/wiki/Liénard–Wiechert_potential

    The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...

  9. Gauge theory - Wikipedia

    en.wikipedia.org/wiki/Gauge_theory

    The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the gauge ...