Search results
Results from the WOW.Com Content Network
A sequence can be thought of as a list of elements with a particular order. [1] [2] Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences.
Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
The Bell number counts the different ways to partition a set that has exactly elements, or equivalently, the equivalence relations on it. B n {\displaystyle B_{n}} also counts the different rhyme schemes for n {\displaystyle n} -line poems.
In mathematics, a tuple is a finite sequence or ordered list of numbers or, more generally, mathematical objects, which are called the elements of the tuple. An n-tuple is a tuple of n elements, where n is a non-negative integer. There is only one 0-tuple, called the empty tuple.
An inversion may be denoted by the pair of places (2, 4) or the pair of elements (5, 2). The inversions of this permutation using element-based notation are: (3, 1), (3, 2), (5, 1), (5, 2), and (5,4). In computer science and discrete mathematics, an inversion in a sequence is a pair of elements that are out of their natural order.
S n: the symmetric group of degree n, containing the n! permutations of n elements; A n: the alternating group of degree n, containing the even permutations of n elements, of order 1 for n = 0, 1, and order n!/2 otherwise; Dic n or Q 4n: the dicyclic group of order 4n. Q 8: the quaternion group of order 8, also Dic 2
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified explicitly by giving a formula for its n th term, or implicitly by giving a relationship between its terms.