enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of paradoxes - Wikipedia

    en.wikipedia.org/wiki/List_of_paradoxes

    Therefore, it is not opposite day, but if you say it is a normal day it would be considered a normal day, which contradicts the fact that it has previously been stated that it is an opposite day. Richard's paradox : We appear to be able to use simple English to define a decimal expansion in a way that is self-contradictory.

  3. List of triangle topics - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_topics

    This list of triangle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or in triangular arrays such as Pascal's triangle or triangular matrices, or concretely in physical space.

  4. Penrose triangle - Wikipedia

    en.wikipedia.org/wiki/Penrose_triangle

    The tribar/triangle appears to be a solid object, made of three straight beams of square cross-section which meet pairwise at right angles at the vertices of the triangle they form. The beams may be broken, forming cubes or cuboids. This combination of properties cannot be realized by any three-dimensional object in ordinary Euclidean space

  5. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    An acute triangle (or acute-angled triangle) is a triangle with three acute angles (less than 90°). An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse ...

  6. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  7. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  8. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    For example, adjacent angles of a parallelogram are supplementary, and opposite angles of a cyclic quadrilateral (one whose vertices all fall on a single circle) are supplementary. If a point P is exterior to a circle with center O, and if the tangent lines from P touch the circle at points T and Q, then ∠TPQ and ∠TOQ are supplementary.

  9. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    In the case in which the original triangle has no angle greater than 120°, this point is also the Fermat point. The Apollonius point is the point of concurrence of three lines, each of which connects a point of tangency of the circle to which the triangle's excircles are internally tangent, to the opposite vertex of the triangle.

  1. Related searches disrupt opposite examples in real life things that involve triangles and angles

    obtuse triangleslist of triangle topics
    obtuse and acute triangles