Search results
Results from the WOW.Com Content Network
Transition is often described as a process proceeding through a series of stages. Transitional flow can refer to transition in either direction, that is laminar–turbulent transitional or turbulent–laminar transitional flow. The process applies to any fluid flow, and is most often used in the context of boundary layers.
A bypass transition is a laminar–turbulent transition in a fluid flow over a surface. It occurs when a laminar boundary layer transitions to a turbulent one through some secondary instability mode, bypassing some of the pre-transitional events that typically occur in a natural laminar–turbulent transition.
Transition modeling is the use of a model to predict the change from laminar and turbulent flows in fluids and their respective effects on the overall solution. The complexity and lack of understanding of the underlining physics of the problems makes simulating the interaction between laminar and turbulent flow to be difficult and very case specific.
Laminar flow occurs at lower velocities, below a threshold at which the flow becomes turbulent. The threshold velocity is determined by a dimensionless parameter characterizing the flow called the Reynolds number, which also depends on the viscosity and density of the fluid and dimensions of the channel. Turbulent flow is a less orderly flow ...
The flow in between will begin to transition from laminar to turbulent and then back to laminar at irregular intervals, called intermittent flow. This is due to the different speeds and conditions of the fluid in different areas of the pipe's cross-section, depending on other factors such as pipe roughness and flow uniformity.
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...
In the field of fluid dynamics the point at which the boundary layer changes from laminar to turbulent is called the transition point.Where and how this transition occurs depends on the Reynolds number, the pressure gradient, pressure fluctuations due to sound, surface vibration, the initial turbulence level of the flow, boundary layer suction, surface heat flows, and surface roughness.
With respect to laminar and turbulent flow regimes: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies, vortices and other flow instabilities.