Search results
Results from the WOW.Com Content Network
Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...
The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector.
Examples of determining indices for a plane using intercepts with axes; left (111), right (221) There are two equivalent ways to define the meaning of the Miller indices: [1] via a point in the reciprocal lattice, or as the inverse intercepts along the lattice vectors.
Fig. 1: A hexagonal sampling lattice and its basis vectors v 1 and v 2 Fig. 2: The reciprocal lattice corresponding to the lattice of Fig. 1 and its basis vectors u 1 and u 2 (figure not to scale). The concept of a bandlimited function in one dimension can be generalized to the notion of a wavenumber-limited function in higher dimensions.
Every crystal is a periodic structure which can be characterized by a Bravais lattice, and for each Bravais lattice we can determine the reciprocal lattice, which encapsulates the periodicity in a set of three reciprocal lattice vectors (b 1, b 2, b 3).
For example, in a crystal's k-space, there is an infinite set of points called the reciprocal lattice which are "equivalent" to k = 0 (this is analogous to aliasing). Likewise, the " first Brillouin zone " is a finite volume of k -space, such that every possible k is "equivalent" to exactly one point in this region.
In a one-dimensional lattice the number of reciprocal lattice vectors that determine the bands in an energy interval is limited to two when the energy rises. In two and three dimensional lattices the number of reciprocal lattice vectors that determine the free electron bands E n ( k ) {\displaystyle E_{n}(\mathbf {k} )} increases more rapidly ...
Ray diagram of Von Laue formulation. In physics, a Bragg plane is a plane in reciprocal space which bisects a reciprocal lattice vector, , at right angles. [1] The Bragg plane is defined as part of the Von Laue condition for diffraction peaks in x-ray diffraction crystallography.