Search results
Results from the WOW.Com Content Network
The general structure of a phosphite ester showing the lone pairs on the P. In organic chemistry, a phosphite ester or organophosphite usually refers to an organophosphorous compound with the formula P(OR) 3. They can be considered as esters of an unobserved tautomer phosphorous acid, H 3 PO 3, with the simplest example being trimethylphosphite ...
Phosphonites are generally more reactive than phosphite esters. They react to produce phosphinates. Heating is also required for the reaction, but pyrolysis of the ester to an acid is a common side reaction. The poor availability of substituted phosphonites limits the usage of this class of reagent in the Arbuzov reaction.
Various specialised methods have been developed on the laboratory-scale for scientific investigations. These are rarely employed in bulk manufacturing. Examples include the Atherton-Todd reaction, which converts a dialkyl phosphite to a phosphoryl chloride. This can then react with an alcohol to give an organophosphate and HCl.
General ester of phosphonous acid Not to be confused with phosphinite (formula P(OR)R 2 ). In organic chemistry , phosphonites are organophosphorus compounds with the formula P(OR) 2 R.
Phosphate esters have the general structure P(=O)(OR) 3 feature P(V). Such species are of technological importance as flame retardant agents, and plasticizers. Lacking a P−C bond, these compounds are in the technical sense not organophosphorus compounds but esters of phosphoric acid. Many derivatives are found in nature, such as ...
General ester of phosphonic acid; in fact, the phosphorus has a formal charge of +1, the oxygen above it has a formal charge of −1, and the bond between them is single. In organic chemistry, phosphonates or phosphonic acids are organophosphorus compounds containing C−PO(OR) 2 groups, where R is an organic group (alkyl, aryl).
When the substituent on the other hand is phenyl (not shown) the phosphite has a preference for reaction with the acyl group leading to an ethyl enol ether. Key in explaining the difference in reactivity is the electron density on the α-keto carbon atom. Perkow quinoline application
The mechanism starts with an allylic sulfoxide 1 which undergoes a thermal 2,3-sigmatropic rearrangement to give a sulfenate ester 2. This can be cleaved using a thiophile, such as phosphite ester , which leaves the allylic alcohol 3 as the product.