Search results
Results from the WOW.Com Content Network
In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface.
The fatigue allowance is intended to cover the time that the worker should be given to overcome fatigue due to work related stress and conditions. There are three factors that cause fatigue: (1) physical factors like standing and use of force, (2) mental and cognitive factors like mental strain and eye strain , and (3) environmental and work ...
Vibration fatigue is a mechanical engineering term describing material fatigue, caused by forced vibration of random nature. An excited structure responds according to its natural-dynamics modes, which results in a dynamic stress load in the material points. [ 1 ]
For premium support please call: 800-290-4726 more ways to reach us
Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.
Fatigue alone is the driving cause of failure in this case, causing the material to fail before oxidation can have much of an effect. [1] TMF still is not fully understood. There are many different models to attempt to predict the behavior and life of materials undergoing TMF loading. The two models presented below take different approaches.
All the potential causes for a failure mode should be identified and documented. This should be in technical terms. Examples of causes are: Human errors in handling, Manufacturing induced faults, Fatigue, Creep, Abrasive wear, erroneous algorithms, excessive voltage or improper operating conditions or use (depending on the used ground rules).
In true corrosion fatigue, the fatigue-crack-growth rate is enhanced by corrosion; this effect is seen in all three regions of the fatigue-crack growth-rate diagram. The diagram on the left is a schematic of crack-growth rate under true corrosion fatigue; the curve shifts to a lower stress-intensity-factor range in the corrosive environment.