Search results
Results from the WOW.Com Content Network
In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomic weight listed for the element in the periodic table. The abundance of an isotope varies from ...
Another application is in radiochemistry, where this may refer to isotopic ratios or isotopic abundances.Mathematically, the isotopic abundance is = , where N i are the number of atoms of the isotope of interest and N tot is the total number of atoms, while the atomic ratio is
Carbon (6 C) has 14 known isotopes, from 8 C to 20 C as well as 22 C, of which 12 C and 13 C are stable.The longest-lived radioisotope is 14 C, with a half-life of 5.70(3) × 10 3 years. . This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reactio
The relative abundances of the four stable isotopes are approximately 1.5%, 24%, 22%, and 52.5%, combining to give a standard atomic weight (abundance-weighted average of the stable isotopes) of 207.2(1). Lead is the element with the heaviest stable isotope, 208 Pb.
All other isotopes have half-lives shorter than 17.35 ms. Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for 7 B and 9 B) while those with mass above 11 mostly become carbon. A chart showing the abundances of the naturally occurring isotopes of boron.
Chlorine (17 Cl) has 25 isotopes, ranging from 28 Cl to 52 Cl, and two isomers, 34m Cl and 38m Cl. There are two stable isotopes, 35 Cl (75.8%) and 37 Cl (24.2%), giving chlorine a standard atomic weight of 35.45. The longest-lived radioactive isotope is 36 Cl, which has a half-life of 301,000 years. All other isotopes have half-lives under 1 ...
Bulk carbon-13 for commercial use, e.g. in chemical synthesis, is enriched from its natural 1% abundance. Although carbon-13 can be separated from the major carbon-12 isotope via techniques such as thermal diffusion, chemical exchange, gas diffusion, and laser and cryogenic distillation, currently only cryogenic distillation of methane (boiling point −161.5°C) or carbon monoxide (b.p. − ...
Naturally occurring europium (63 Eu) is composed of two isotopes, 151 Eu and 153 Eu, with 153 Eu being the most abundant (52.2% natural abundance).While 153 Eu is observationally stable (theoretically can undergo alpha decay with half-life over 5.5×10 17 years), 151 Eu was found in 2007 to be unstable and undergo alpha decay. [4]