Ads
related to: examples of perpendicular angles problems worksheet 1 2 and 1 4
Search results
Results from the WOW.Com Content Network
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle.
A method to solve such problems is to consider the rate of change of the angle in degrees per minute. The hour hand of a normal 12-hour analogue clock turns 360° in 12 hours (720 minutes) or 0.5° per minute. The minute hand rotates through 360° in 60 minutes or 6° per minute. [1]
A convex quadrilateral is ex-tangential if and only if there are six concurrent angles bisectors: the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect.
The sum of the squared lengths of any two perpendicular chords intersecting at a given point is the same as that of any other two perpendicular chords intersecting at the same point, and is given by 8r 2 – 4p 2 (where r is the circle's radius and p is the distance from the center point to the point of intersection). [5]
For a cyclic quadrilateral that is also orthodiagonal (has perpendicular diagonals), suppose the intersection of the diagonals divides one diagonal into segments of lengths p 1 and p 2 and divides the other diagonal into segments of lengths q 1 and q 2. Then [28] (the first equality is Proposition 11 in Archimedes' Book of Lemmas)
Note that h 2 is the power of the point B with respect to the circle. The use of the Pythagorean theorem and the tangent secant theorem can be replaced by a single application of the power of a point theorem. Case of acute angle γ, where a < 2b cos γ. Drop the perpendicular from A onto a = BC, creating a line segment of length b cos γ.
Through A' draw a line s' (A'E') on the side closer to E, so that the angle B'A'E' is the same as angle BAE. Then s' meets s in an ordinary point D'. Construct a point D on ray AE so that AD = A'D'. Then D' ≠ D. They are the same distance from r and both lie on s. So the perpendicular bisector of D'D (a segment of s) is also perpendicular to ...
Let the perpendicular to the line of symmetry, through the focus, intersect the parabola at a point T. Then (1) the distance from F to T is 2f, and (2) a tangent to the parabola at point T intersects the line of symmetry at a 45° angle. [13]: 26 Perpendicular tangents intersect on the directrix
Ads
related to: examples of perpendicular angles problems worksheet 1 2 and 1 4