Search results
Results from the WOW.Com Content Network
Systems ecology is an interdisciplinary field of ecology, a subset of Earth system science, that takes a holistic approach to the study of ecological systems, especially ecosystems. [ 1 ] [ 2 ] [ 3 ] Systems ecology can be seen as an application of general systems theory to ecology.
As a transdisciplinary, interdisciplinary, and multiperspectival endeavor, systems theory brings together principles and concepts from ontology, the philosophy of science, physics, computer science, biology, and engineering, as well as geography, sociology, political science, psychotherapy (especially family systems therapy), and economics ...
Systems biology is the computational and mathematical analysis and modeling of complex biological systems.It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research.
Bioeconomy has large variety of definitions. The bioeconomy comprises those parts of the economy that use renewable biological resources from land and sea – such as crops, forests, fish, animals and micro-organisms – to produce food, health, materials, products, textiles and energy.
Systems science, also referred to as systems research or simply systems, [1] is a transdisciplinary [2] field that is concerned with understanding simple and complex systems in nature and society, which leads to the advancements of formal, natural, social, and applied attributions throughout engineering, technology and science, itself.
A primary objective of ecological economics (EE) is to ground economic thinking and practice in physical reality, especially in the laws of physics (particularly the laws of thermodynamics) and in knowledge of biological systems. It accepts as a goal the improvement of human well-being through development, and seeks to ensure achievement of ...
A complex system is a system composed of many components which may interact with each other. [1] Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication systems, complex software and electronic systems, social and economic organizations (like cities), an ecosystem, a living cell, and, ultimately, for ...
A third study used a Bayesian decision support system to both model the uncertainty in the scientific information Bayes Nets and to assist collecting and fusing the input from stakeholders. This study was about siting wave energy devices off the Oregon Coast, but presents a general method for managing uncertain spatial science and stakeholder ...