Search results
Results from the WOW.Com Content Network
The Earth–ionosphere waveguide [1] is the phenomenon in which certain radio waves can propagate in the space between the ground and the boundary of the ionosphere. Because the ionosphere contains charged particles, it can behave as a conductor. The earth operates as a ground plane, and the resulting cavity behaves as a large waveguide.
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere.
This radiative ground wave is known as Norton surface wave, or more properly Norton ground wave, because ground waves in radio propagation are not confined to the surface. Another type of surface wave is the non-radiative, bound-mode Zenneck surface wave or Zenneck–Sommerfeld surface wave .
Layers of the ionosphere.The Kennelly–Heaviside layer is the E region. The Heaviside layer, [1] [2] sometimes called the Kennelly–Heaviside layer, [3] [4] named after Arthur E. Kennelly and Oliver Heaviside, is a layer of ionised gas occurring roughly between 90km and 150 km (56 and 93 mi) above the ground — one of several layers in the Earth's ionosphere.
Thousands of kilometres wide, these waves are driven by wind under the influence of Earth's rotation and are important mechanisms for transmitting climate signals across the large ocean basins. At high latitudes, they travel twice as fast as scientists believed previously, showing the ocean responds much more quickly to climate changes than was ...
When waves travel into areas of shallow water, they begin to be affected by the ocean bottom. [1] The free orbital motion of the water is disrupted, and water particles in orbital motion no longer return to their original position. As the water becomes shallower, the swell becomes higher and steeper, ultimately assuming the familiar sharp ...
The leader of the support group in Tannahill’s story, a man called Omar, links the Hum to the Schumann resonances, “a real-life geoscience phenomenon in which the Earth is hit by 8 million ...
Radio waves (black) reflecting off the ionosphere (red) during skywave propagation. Line altitude in this image is significantly exaggerated and not to scale. In radio communication, skywave or skip refers to the propagation of radio waves reflected or refracted back toward Earth from the ionosphere, an electrically charged layer of the upper atmosphere.