Search results
Results from the WOW.Com Content Network
The 600-cell is the fifth in the sequence of 6 convex regular 4-polytopes (in order of complexity and size at the same radius). [a] It can be deconstructed into twenty-five overlapping instances of its immediate predecessor the 24-cell, [5] as the 24-cell can be deconstructed into three overlapping instances of its predecessor the tesseract (8-cell), and the 8-cell can be deconstructed into ...
A 4-polytope is uniform if it has a symmetry group under which all vertices are equivalent, and its cells are uniform polyhedra. The faces of a uniform 4-polytope must be regular. A 4-polytope is scaliform if it is vertex-transitive, and has all equal length edges. This allows cells which are not uniform, such as the regular-faced convex ...
The tesseract is one of 6 convex regular 4-polytopes. In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope.They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.
In the first part of the 20th century, Coxeter and Petrie discovered three infinite structures {4, 6}, {6, 4} and {6, 6}. They called them regular skew polyhedra, because they seemed to satisfy the definition of a regular polyhedron — all the vertices, edges and faces are alike, all the angles are the same, and the figure has no free edges.
Fuller (1975) used these 6 great circles, along with 15 and 10 others in two other polyhedra to define his 31 great circles of the spherical icosahedron. [ 6 ] The long radius (center to vertex) of the icosidodecahedron is in the golden ratio to its edge length; thus its radius is φ if its edge length is 1, and its edge length is 1 / φ ...
Two of the simplest possible embedded toroidal polyhedra are the Császár and Szilassi polyhedra. The Császár polyhedron is a seven-vertex toroidal polyhedron with 21 edges and 14 triangular faces. [6] It and the tetrahedron are the only known polyhedra in which every possible line segment connecting two vertices forms an edge of the ...
The 16-cell is the second in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). [a]Each of its 4 successor convex regular 4-polytopes can be constructed as the convex hull of a polytope compound of multiple 16-cells: the 16-vertex tesseract as a compound of two 16-cells, the 24-vertex 24-cell as a compound of three 16-cells, the 120-vertex 600-cell as a compound of ...
Other than rhombic triacontahedron, it is one of two Catalan solids that each have the property that their isometry groups are edge-transitive; the other convex polyhedron classes being the five Platonic solids and the other two Archimedean solids: its dual polyhedron and icosidodecahedron. Denoting by a the edge length of a rhombic dodecahedron,