enow.com Web Search

  1. Ad

    related to: golden rectangle equation solver algebra 3

Search results

  1. Results from the WOW.Com Content Network
  2. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  3. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    A golden rectangle—that is, a rectangle with an aspect ratio of ⁠ ⁠ —may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural objects and artificial systems such as financial markets , in some cases based on dubious fits to data. [ 8 ]

  4. Supergolden ratio - Wikipedia

    en.wikipedia.org/wiki/Supergolden_ratio

    A supergolden rectangle is a rectangle whose side lengths are in a ⁠: ⁠ ratio. Compared to the golden rectangle , the supergolden rectangle has one more degree of self-similarity . Given a rectangle of height 1 , length ⁠ ψ {\displaystyle \psi } ⁠ and diagonal length ψ 3 {\displaystyle {\sqrt {\psi ^{3}}}} (according to 1 + ψ 2 = ψ ...

  5. Supersilver ratio - Wikipedia

    en.wikipedia.org/wiki/Supersilver_ratio

    Its true value is the real solution of the equation x 3 = 2x 2 + 1. The name supersilver ratio results from analogy with the silver ratio , the positive solution of the equation x 2 = 2 x + 1 , and the supergolden ratio .

  6. Metallic mean - Wikipedia

    en.wikipedia.org/wiki/Metallic_mean

    Consider a rectangle such that the ratio of its length L to its width W is the n th metallic ratio. If one remove from this rectangle n squares of side length W, one gets a rectangle similar to the original rectangle; that is, a rectangle with the same ratio of the length to the width (see figures).

  7. Golden angle - Wikipedia

    en.wikipedia.org/wiki/Golden_angle

    The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...

  8. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...

  9. Square root of 5 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_5

    The diagonal of a half square forms the basis for the geometrical construction of a golden rectangle.. The golden ratio φ is the arithmetic mean of 1 and . [4] The algebraic relationship between , the golden ratio and the conjugate of the golden ratio (Φ = − ⁠ 1 / φ ⁠ = 1 − φ) is expressed in the following formulae:

  1. Ad

    related to: golden rectangle equation solver algebra 3