enow.com Web Search

  1. Ads

    related to: how to solve a square pyramid surface area problem triangular prism volume

Search results

  1. Results from the WOW.Com Content Network
  2. Augmented triangular prism - Wikipedia

    en.wikipedia.org/wiki/Augmented_triangular_prism

    The augmented triangular prism can be constructed from a triangular prism by attaching an equilateral square pyramid to one of its square faces, a process known as augmentation. [1] This square pyramid covers the square face of the prism, so the resulting polyhedron has 6 equilateral triangles and 2 squares as its faces. [ 2 ]

  3. Triaugmented triangular prism - Wikipedia

    en.wikipedia.org/wiki/Triaugmented_triangular_prism

    A triaugmented triangular prism with edge length has surface area [10], the area of 14 equilateral triangles. Its volume, [10] +, can be derived by slicing it into a central prism and three square pyramids, and adding their volumes.

  4. Biaugmented triangular prism - Wikipedia

    en.wikipedia.org/wiki/Biaugmented_triangular_prism

    A biaugmented triangular prism with edge length has a surface area, calculated by adding ten equilateral triangles and one square's area: [2] +. Its volume can be obtained by slicing it into a regular triangular prism and two equilateral square pyramids, and adding their volumes subsequently: [2] +.

  5. Elongated triangular pyramid - Wikipedia

    en.wikipedia.org/wiki/Elongated_triangular_pyramid

    An elongated triangular pyramid with edge length has a height, by adding the height of a regular tetrahedron and a triangular prism: [4] (+). Its surface area can be calculated by adding the area of all eight equilateral triangles and three squares: [2] (+), and its volume can be calculated by slicing it into a regular tetrahedron and a prism, adding their volume up: [2]: ((+)).

  6. Gyroelongated square pyramid - Wikipedia

    en.wikipedia.org/wiki/Gyroelongated_square_pyramid

    The surface area of a gyroelongated square pyramid with edge length is: [3] (+), the area of twelve equilateral triangles and a square. Its volume: [ 3 ] 2 + 2 4 + 3 2 6 a 3 ≈ 1.193 a 3 , {\displaystyle {\frac {{\sqrt {2}}+2{\sqrt {4+3{\sqrt {2}}}}}{6}}a^{3}\approx 1.193a^{3},} can be obtained by slicing the square pyramid and the square ...

  7. Triangular prism - Wikipedia

    en.wikipedia.org/wiki/Triangular_prism

    In the case of a triangular prism, its base is a triangle, so its volume can be calculated by multiplying the area of a triangle and the length of the prism: , where b is the length of one side of the triangle, h is the length of an altitude drawn to that side, and l is the distance between the triangular faces. [9]

  8. Surface area - Wikipedia

    en.wikipedia.org/wiki/Surface_area

    A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...

  9. Square pyramid - Wikipedia

    en.wikipedia.org/wiki/Square_pyramid

    A polyhedron's surface area is the sum of the areas of its faces. The surface area of a right square pyramid can be expressed as = +, where and are the areas of one of its triangles and its base, respectively. The area of a triangle is half of the product of its base and side, with the area of a square being the length of the side squared.

  1. Ads

    related to: how to solve a square pyramid surface area problem triangular prism volume