Search results
Results from the WOW.Com Content Network
The first step toward a theory of Solar System formation and evolution was the general acceptance of heliocentrism, which placed the Sun at the centre of the system and the Earth in orbit around it. This concept had been developed for millennia ( Aristarchus of Samos had suggested it as early as 250 BC), but was not widely accepted until the ...
The most widely accepted model of planetary formation is known as the nebular hypothesis.This model posits that, 4.6 billion years ago, the Solar System was formed by the gravitational collapse of a giant molecular cloud spanning several light-years.
The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets.
The Solar System [d] is the gravitationally bound system of the Sun and the objects that orbit it. [11] It formed about 4.6 billion years ago when a dense region of a molecular cloud collapsed, forming the Sun and a protoplanetary disc.
The Chamberlin–Moulton planetesimal hypothesis was proposed in 1905 by geologist Thomas Chrowder Chamberlin and astronomer Forest Ray Moulton to describe the formation of the Solar System. It was proposed as a replacement for the Laplacian version of the nebular hypothesis that had prevailed since the 19th century.
The standard model for the formation of the Solar System (including the Earth) is the solar nebula hypothesis. [22] In this model, the Solar System formed from a large, rotating cloud of interstellar dust and gas called the solar nebula .
1796 – Pierre Laplace re-states the nebular hypothesis for the formation of the Solar System from a spinning nebula of gas and dust. [ 124 ] 1798 – Henry Cavendish accurately measures the gravitational constant in the laboratory , which allows the mass of the Earth to be derived, and hence the masses of all bodies in the Solar System.
Planetesimals that have survived to the current day are valuable to science because they contain information about the formation of the Solar System. Although their exteriors are subjected to intense solar radiation that can alter their chemistry, their interiors contain pristine material essentially untouched since the planetesimal was formed.