Ad
related to: dilation formula in geometry calculator with points and vectors
Search results
Results from the WOW.Com Content Network
In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]
Minkowski addition and convex hulls. The sixteen dark-red points (on the right) form the Minkowski sum of the four non-convex sets (on the left), each of which consists of a pair of red points. Their convex hulls (shaded pink) contain plus-signs (+): The right plus-sign is the sum of the left plus-signs.
In Euclidean geometry homotheties are the similarities that fix a point and either preserve (if >) or reverse (if <) the direction of all vectors. Together with the translations , all homotheties of an affine (or Euclidean) space form a group , the group of dilations or homothety-translations .
A point: the locus of x in R 3 is a point if A in R 4,1 is a vector on the null cone. (N.B. that because it's a homogeneous projective space, vectors of any length on a ray through the origin are equivalent, so g(x).A =0 is equivalent to g(x).g(a) = 0). A sphere: the locus of x is a sphere if A = S, a vector off the null cone.
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O , and its direction represents the angular orientation with respect to given reference axes.
This is the formula for length contraction. As there existed a proper time for time dilation, there exists a proper length for length contraction, which in this case is ℓ. The proper length of an object is the length of the object in the frame in which the object is at rest.
Each iteration of the Sierpinski triangle contains triangles related to the next iteration by a scale factor of 1/2. In affine geometry, uniform scaling (or isotropic scaling [1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically).
In plane geometry, a shear mapping is an affine transformation that displaces each point in a fixed direction by an amount proportional to its signed distance from a given line parallel to that direction. [1] This type of mapping is also called shear transformation, transvection, or just shearing.
Ad
related to: dilation formula in geometry calculator with points and vectors