enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The theorem tells us how different parts of the mass distribution affect the gravitational force measured at a point located a distance r 0 from the center of the mass distribution: [13] The portion of the mass that is located at radii r < r 0 causes the same force at the radius r 0 as if all of the mass enclosed within a sphere of radius r 0 ...

  3. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    A gravimeter is an instrument used to measure gravitational acceleration. Every mass has an associated gravitational potential. The gradient of this potential is a force. A gravimeter measures this gravitational force. For a small body, general relativity predicts gravitational effects indistinguishable from the effects of acceleration by the ...

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  5. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The gravitational constant is a physical constant that is difficult to measure with high accuracy. [7] This is because the gravitational force is an extremely weak force as compared to other fundamental forces at the laboratory scale. [d] In SI units, the CODATA-recommended value of the gravitational constant is: [1]

  6. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the ...

  7. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Because mass and weight are separate quantities, they have different units of measure. In the International System of Units (SI), the kilogram is the basic unit of mass, and the newton is the basic unit of force. The non-SI kilogram-force is also a unit of force typically used in the measure

  8. Gauss's law for gravity - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_gravity

    The gravitational field g (also called gravitational acceleration) is a vector field – a vector at each point of space (and time).It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point.

  9. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    The experiment measured the faint gravitational attraction between the small and large balls, which deflected the torsion balance rod by about 0.16" (or only 0.03" with a stiffer suspending wire). Vertical section drawing of Cavendish's torsion balance instrument including the building in which it was housed.