Search results
Results from the WOW.Com Content Network
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The geometric series on the real line. In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
The nth partial sum of the series is the triangular number = = (+), which increases without bound as n goes to infinity. Because the sequence of partial sums fails to converge to a finite limit, the series does not have a sum. Although the series seems at first sight not to have any meaningful value at all, it can be manipulated to yield a ...
Diagram illustrating three basic geometric sequences of the pattern 1(r n−1) up to 6 iterations deep.The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively.
In mathematics, the infinite series 1 / 4 + 1 / 16 + 1 / 64 + 1 / 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1]
Similarly, in a series, any finite groupings of terms of the series will not change the limit of the partial sums of the series and thus will not change the sum of the series. However, if an infinite number of groupings is performed in an infinite series, then the partial sums of the grouped series may have a different limit than the original ...
The number e can be expressed as the sum of the following infinite series: e x = ∑ k = 0 ∞ x k k ! {\displaystyle e^{x}=\sum _{k=0}^{\infty }{\frac {x^{k}}{k!}}} for any real number x . In the special case where x = 1 or −1, we have: