enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scale analysis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scale_analysis_(mathematics)

    Scale analysis anticipates within a factor of order one when done properly, the expensive results produced by exact analyses. Scale analysis rules as follows: Rule1-First step in scale analysis is to define the domain of extent in which we apply scale analysis. Any scale analysis of a flow region that is not uniquely defined is not valid.

  3. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    The Eulerian specification of the flow field is a way of looking at fluid motion that focuses on specific locations in the space through which the fluid flows as time passes. [ 1 ] [ 2 ] This can be visualized by sitting on the bank of a river and watching the water pass the fixed location.

  4. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  5. Curve-shortening flow - Wikipedia

    en.wikipedia.org/wiki/Curve-shortening_flow

    A flow is a process in which the points of a space continuously change their locations or properties over time. More specifically, in a one-dimensional geometric flow such as the curve-shortening flow, the points undergoing the flow belong to a curve, and what changes is the shape of the curve, its embedding into the Euclidean plane determined by the locations of each of its points. [2]

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). q {\displaystyle q} is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of x {\displaystyle x} , w {\displaystyle w ...

  7. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    In this form, K and n are not the same as the constants commonly seen in the Hollomon equation. [2] The equation is essentially assuming the elastic strain portion of the stress-strain curve, , can be modeled with a line, while the plastic portion, , can be modeled with a power law. The elastic and plastic components are summed to find the ...

  8. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    As for the tensile strength point, it is the maximal point in engineering stress–strain curve but is not a special point in true stress–strain curve. Because engineering stress is proportional to the force applied along the sample, the criterion for necking formation can be set as δ F = 0. {\displaystyle \delta F=0.}

  9. Rankine–Hugoniot conditions - Wikipedia

    en.wikipedia.org/wiki/Rankine–Hugoniot_conditions

    The curve represents a plot of equation with p 1, v 1, c 0, and s known. If p 1 = 0, the curve will intersect the specific volume axis at the point v 1. Hugoniot elastic limit in the p-v plane for a shock in an elastic-plastic material. For shocks in solids, a closed form expression such as equation cannot be