Search results
Results from the WOW.Com Content Network
In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar bonds due to a difference in electronegativity between the bonded atoms.
By adding a "dispersive" or "random-mixing physical" term, it better predicts mixtures of molecules with both polar and non-polar groups. However, separate calculation of the dispersive and quasi-chemical terms means the contact surfaces are not uniquely defined.
This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔE a, ΔΔG ‡ activation. On the right is an S N 2 reaction coordinate diagram. Note the decreased ΔG ‡ activation for the non-polar-solvent reaction ...
In chemical reactions the use of polar protic solvents favors the S N 1 reaction mechanism, while polar aprotic solvents favor the S N 2 reaction mechanism. These polar solvents are capable of forming hydrogen bonds with water to dissolve in water whereas non-polar solvents are not capable of strong hydrogen bonds.
The Taft equation is often employed in biological chemistry and medicinal chemistry for the development of quantitative structure–activity relationships (QSARs). In a recent example, Sandri and co-workers [ 13 ] have used Taft plots in studies of polar effects in the aminolysis of β-lactams .
The hydrophobic effect is the desire for non-polar molecules to aggregate in aqueous solutions in order to separate from water. [22] This phenomenon leads to minimum exposed surface area of non-polar molecules to the polar water molecules (typically spherical droplets), and is commonly used in biochemistry to study protein folding and other ...
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
There are two possible structures for hydrogen cyanide, HCN and CNH, differing only as to the position of the hydrogen atom. The structure with hydrogen attached to nitrogen, CNH, leads to formal charges of -1 on carbon and +1 on nitrogen, which would be partially compensated for by the electronegativity of nitrogen and Pauling calculated the net charges on H, N and C as -0.79, +0.75 and +0.04 ...