enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language ( § Principle of duality ) and the other a more functional approach through special ...

  3. Projective plane - Wikipedia

    en.wikipedia.org/wiki/Projective_plane

    The affine planes which arise from the projective planes PG(2, q) are denoted by AG(2, q). There is a projective plane of order N if and only if there is an affine plane of order N. When there is only one affine plane of order N there is only one projective plane of order N, but the converse is not true. The affine planes formed by the removal ...

  4. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The Fano plane is the projective plane with the fewest points and lines. The smallest 2-dimensional projective geometry (that with the fewest points) is the Fano plane, which has 3 points on every line, with 7 points and 7 lines in all, having the following collinearities:

  5. Cayley plane - Wikipedia

    en.wikipedia.org/wiki/Cayley_plane

    In the Cayley plane, lines and points may be defined in a natural way so that it becomes a 2-dimensional projective space, that is, a projective plane. It is a non-Desarguesian plane, where Desargues' theorem does not hold. More precisely, as of 2005, there are two objects called Cayley planes, namely the real and the complex Cayley plane.

  6. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    A two-dimensional complex space – such as the two-dimensional complex coordinate space, the complex projective plane, or a complex surface – has two complex dimensions, which can alternately be represented using four real dimensions. A two-dimensional lattice is an infinite grid of points which can be represented using integer coordinates.

  7. Real projective plane - Wikipedia

    en.wikipedia.org/wiki/Real_projective_plane

    The projective plane cannot be embedded (that is without intersection) in three-dimensional Euclidean space. The proof that the projective plane does not embed in three-dimensional Euclidean space goes like this: Assuming that it does embed, it would bound a compact region in three-dimensional Euclidean space by the generalized Jordan curve ...

  8. Galois geometry - Wikipedia

    en.wikipedia.org/wiki/Galois_geometry

    The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]

  9. Veblen–Young theorem - Wikipedia

    en.wikipedia.org/wiki/Veblen–Young_theorem

    Non-Desarguesian planes give examples of 2-dimensional projective spaces that do not arise from vector spaces over division rings, showing that the restriction to dimension at least 3 is necessary. Jacques Tits generalized the Veblen–Young theorem to Tits buildings, showing that those of rank at least 3 arise from algebraic groups.