Search results
Results from the WOW.Com Content Network
All radii, once calculated, are divided by 6.957 × 10 8 to convert from m to R ☉.. AD radius determined from angular diameter and distance =, (/) =, = D is multiplied by 3.0857 × 10 19 to convert from kpc to m
The moons of the trans-Neptunian objects (other than Charon) have not been included, because they appear to follow the normal situation for TNOs rather than the moons of Saturn and Uranus, and become solid at a larger size (900–1000 km diameter, rather than 400 km as for the moons of Saturn and Uranus).
Evolution of the solar luminosity, radius and effective temperature compared to the present-day Sun. After Ribas (2009) [3] The uncrewed SOHO spacecraft was used to measure the radius of the Sun by timing transits of Mercury across the surface during 2003 and 2006. The result was a measured radius of 696,342 ± 65 kilometres (432,687 ± 40 ...
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
In the case of a sphere, the mean radius is equal to the radius. For any irregularly shaped rigid body, there is a unique ellipsoid with the same volume and moments of inertia . [ 2 ] In astronomy, the dimensions of an object are defined as the principal axes of that special ellipsoid.
[17] [84] The core is relatively small, with a mass of only 0.55 Earth masses and a radius less than 20% of the planet; the mantle comprises its bulk, with around 13.4 Earth masses, and the upper atmosphere is relatively insubstantial, weighing about 0.5 Earth masses and extending for the last 20% of Uranus's radius. [17] [84] Uranus's core ...
For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+). For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3 ⋅s −2.
The centimetre (SI symbol: cm) is a unit of length in the metric system equal to 10 −2 metres ( 1 / 100 m = 0.01 m). To help compare different orders of magnitude, this section lists lengths between 10 −2 m and 10 −1 m (1 cm and 1 dm). 1 cm – 10 millimeters; 1 cm – 0.39 inches; 1 cm – edge of a square of area 1 cm 2