enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Winning Ways for Your Mathematical Plays - Wikipedia

    en.wikipedia.org/wiki/Winning_Ways_for_Your...

    The first volume introduces combinatorial game theory and its foundation in the surreal numbers; partizan and impartial games; Sprague–Grundy theory and misère games. The second volume applies the theorems of the first volume to many games, including nim , sprouts , dots and boxes , Sylver coinage , philosopher's phutball , fox and geese .

  3. Game theory - Wikipedia

    en.wikipedia.org/wiki/Game_theory

    Von Neumann's work in game theory culminated in his 1944 book Theory of Games and Economic Behavior, co-authored with Oskar Morgenstern. [12] The second edition of this book provided an axiomatic theory of utility, which reincarnated Daniel Bernoulli's old theory of utility (of money) as an independent discipline. This foundational work ...

  4. The Mathematics of Games and Gambling - Wikipedia

    en.wikipedia.org/wiki/The_Mathematics_of_Games...

    The sixth chapter of the book moves from probability theory to game theory, including material on tic-tac-toe, matrix representations of zero-sum games, nonzero-sum games such as the prisoner's dilemma, the concept of a Nash equilibrium, game trees, and the minimax method used by computers to play two-player strategy games.

  5. Theory of Games and Economic Behavior - Wikipedia

    en.wikipedia.org/wiki/Theory_of_Games_and...

    Theory of Games and Economic Behavior, published in 1944 [1] by Princeton University Press, is a book by mathematician John von Neumann and economist Oskar Morgenstern which is considered the groundbreaking text that created the interdisciplinary research field of game theory.

  6. Combinatorial game theory - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_game_theory

    Essentially, combinatorial game theory has contributed new methods for analyzing game trees, for example using surreal numbers, which are a subclass of all two-player perfect-information games. [3] The type of games studied by combinatorial game theory is also of interest in artificial intelligence, particularly for automated planning and ...

  7. Gambling mathematics - Wikipedia

    en.wikipedia.org/wiki/Gambling_mathematics

    The mathematics of gambling is a collection of probability applications encountered in games of chance and can get included in game theory.From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, and it is possible to calculate by using the properties of probability on a finite space of possibilities.

  8. Sprague–Grundy theorem - Wikipedia

    en.wikipedia.org/wiki/Sprague–Grundy_theorem

    The Grundy value or nim-value of any impartial game is the unique nimber that the game is equivalent to. In the case of a game whose positions are indexed by the natural numbers (like nim itself, which is indexed by its heap sizes), the sequence of nimbers for successive positions of the game is called the nim-sequence of the game.

  9. Category:Mathematics books - Wikipedia

    en.wikipedia.org/wiki/Category:Mathematics_books

    Download as PDF; Printable version; ... Books about game theory (11 P) H. Mathematics handbooks ... Pages in category "Mathematics books"