Search results
Results from the WOW.Com Content Network
Nutrients in the soil are taken up by the plant through its roots, and in particular its root hairs.To be taken up by a plant, a nutrient element must be located near the root surface; however, the supply of nutrients in contact with the root is rapidly depleted within a distance of ca. 2 mm. [14] There are three basic mechanisms whereby nutrient ions dissolved in the soil solution are brought ...
The water content of most vegetal detritus ranges from 60% to 90%. The dry matter consists mainly of carbon, oxygen, and hydrogen. Although these three elements make up about 92% of the dry weight of the organic matter in the soil, other elements present are essential for the nutrition of plants, including nitrogen, phosphorus, potassium ...
They form in soil parent material that contains calcium carbonate or receive regular inputs of carbonates through dust. Carbonates are transported into the subsoil by water that precipitates the carbonates in the subsoil upon evaporation, eventually forming a massive, continuous layer of cemented carbonates.
Soil aeration maintains oxygen levels in the plants' root zone, needed for microbial and root respiration, and important to plant growth. Additionally, oxygen levels regulate soil temperatures and play a role in some chemical processes that support the oxidation of elements like Mn 2+ and Fe 2+ that can be toxic.
Soil gases (soil atmosphere [1]) are the gases found in the air space between soil components. The spaces between the solid soil particles, if they do not contain water, are filled with air. The primary soil gases are nitrogen, carbon dioxide and oxygen. [2] Oxygen is critical because it allows for respiration of both plant roots and soil ...
When soil is irrigated with high salinity water or sufficient water is not draining out from the irrigated soil, the soil would convert into saline soil or lose its fertility. Saline water enhance the turgor pressure or osmotic pressure requirement which impedes the off take of water and nutrients by the plant roots.
Calcids have the extent of calcium carbonate so they can also known as calcareous soil or calcisols.Due to high calcium content, coarse texture, undulating surface, and even due to unsuitable climate, calcids are not suitable for fruit tree and crop cultivation.
Acidic, sandy, or coarse soils often contain less calcium. Uneven soil moisture and overuse of fertilizers can also cause calcium deficiency. At times, even with sufficient calcium in the soil, it can be in an insoluble form and is then unusable by the plant or it could be attributed to a "transport protein". [2]