enow.com Web Search

  1. Ad

    related to: multiplying imaginary numbers calculator with fractions

Search results

  1. Results from the WOW.Com Content Network
  2. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    Complex conjugate. Geometric representation (Argand diagram) of and its conjugate in the complex plane. The complex conjugate is found by reflecting across the real axis. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign.

  3. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    Complex number. A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i2 = −1. In mathematics, a complex number is an element of a number system ...

  4. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i2 = −1. [1][2] The square of an imaginary number bi is −b2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]

  5. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/ x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a / b is b / a. For the multiplicative inverse of a real number, divide 1 by the number.

  6. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    The imaginary unit or unit imaginary number (i) is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.

  7. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    t. e. In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal x -axis, called the real axis, is formed by the real numbers, and the vertical y -axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows for a geometric ...

  8. Gaussian integer - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integer

    The Gaussian integers are the set [1] [] = {+,}, =In other words, a Gaussian integer is a complex number such that its real and imaginary parts are both integers.Since the Gaussian integers are closed under addition and multiplication, they form a commutative ring, which is a subring of the field of complex numbers.

  9. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Tetration is also defined recursively as. allowing for attempts to extend tetration to non-natural numbers such as real, complex, and ordinal numbers. The two inverses of tetration are called super-root and super-logarithm, analogous to the nth root and the logarithmic functions.

  1. Ad

    related to: multiplying imaginary numbers calculator with fractions