Search results
Results from the WOW.Com Content Network
Mass fraction (chemistry) In chemistry, the mass fraction of a substance within a mixture is the ratio (alternatively denoted ) of the mass of that substance to the total mass of the mixture. [1] Expressed as a formula, the mass fraction is: tot {\displaystyle w_ {i}= {\frac {m_ {i}} {m_ {\text {tot}}}}.} Because the individual masses of the ...
In chemistry, the mole fraction or molar fraction, also called mole proportion or molar proportion, is a quantity defined as the ratio between the amount of a constituent substance, ni (expressed in unit of moles, symbol mol), and the total amount of all constituents in a mixture, ntot (also expressed in moles): [1] It is denoted xi (lowercase ...
Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter ...
M N−1. In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each reactant per mole of reaction. The mass ratios can be calculated by dividing each by the total in the whole reaction.
In chemistry, the mass concentration ρi (or γi) is defined as the mass of a constituent mi divided by the volume of the mixture V. [1] For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
The Henderson–Hasselbalch equation can be used to estimate the pH of a buffer solution by approximating the actual concentration ratio as the ratio of the analytical concentrations of the acid and of a salt, MA. The equation can also be applied to bases by specifying the protonated form of the base as the acid. For example, with an amine,
The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2] For example, the equivalent weight of oxygen is 16.0/2 = 8.0 grams. For acid–base reactions, the equivalent weight of an acid or base is the mass which ...